VSCode Open Project RozSirenie
Technicky Report (Backend & API)

1 Ciel projektu

Hlavnym ciefom tohto projektu bolo vytvorit funkéné prepojenie medzi vyvojovym prostredim
Visual Studio Code a nastrojom na spravu projektov OpenProject. Moja ¢ast prace sa
sustredila na vytvorenie robustnej komunikacnej vrstvy, ktora zabezpecuje autentifikaciu,
stahovanie dat a ich transformaciu pre potreby pouzZivatelského rozhrania.

2 Prehlad realizovanej prace (Backendova integracia)

V ramci timovej spoluprace som prebral zodpovednost za ,motor celého rozSirenia. Praca
si vyzadovala nielen programovanie v jazyku TypeScript, ale aj hlboké pochopenie
OpenProject API v3 a pracu s vyvojovym prostredim v kontajneroch.

2.1 Priprava prostredia a Docker
Jednou z prvych vyziev bolo spravne nastavenie lokalneho vyvojového prostredia.

e Musel som sa naucit pracovat s nastrojom Docker, aby som mohol lokalne spustat
inStanciu OpenProjectu.

e Toto rieSenie nam umoznilo testovat API volania (GET, POST, PATCH) bez rizika
ovplyvnenia realnych dat a poskytlo nam plnu kontrolu nad databazou uloh.

2.2 Implementacia ApiClient.ts

Srdcom backendu je trieda ApiClient, ktord som kompletne navrhol a implementoval.
Zabezpecduje:

e Autentifikaciu: Implementoval som bezpecné overenie cez API klu€¢ pomocou Basic
Auth (Base64 kodovanie).
e Komunikaénu vrstvu: Pouzil som kniznicu Axios na vykonavanie asynchronnych
poziadaviek.
e Spravu dat (CRUD): * getProjects: Ziskavanie zoznamu projektov s podporou
filtrovania (napr. len korefové projekty).
o getWorkPackages: Nacitanie uloh pre konkrétny projekt.
o updateWorkPackage: Implementacia PATCH poziadaviek, kde som musel
vyrieSit' logiku lockVersion, aby nedochadzalo ku konfliktom pri prepisovani
dat viacerymi pouzivatelmi.

2.3 Optimalizacia a Lazy Loading v TreeProvideri



V subore workPackageTreeProvider.ts som sa zameral na efektivitu zobrazenia dat v
bo&nom paneli VS Code.

e Lazy Loading: Implementoval som metddu getChildren, ktora nenacitava vSetky data
naraz. K dopytovaniu APl dochadza az vo chvili, ked pouzivatel rozbali konkrétny
projekt alebo ulohu.

e Hierarchicka struktura: Navrhol som logiku, ktora rozliSuje medzi projektmi,
podprojektmi a tlohami (Work Packages). Ulohy st nasledne filtrované tak, aby sa
spravne zobrazovali ich rodiCovské a dcérske vztahy.

e Cachovanie: Pouzil som Map (wpCache) na do€asné ukladanie nacitanych uloh, ¢o
vyrazne znizuje pocet potrebnych API volani pri opatovnom prezerani stromu.

3 Technické detaily a datové modely

Pre zabezpedenie typovej bezpecnosti v celom projekte som definoval rozhrania (interfaces)
v subore types.ts.

e HAL JSON Format: OpenProject API vyuziva format HAL (Hypertext Application
Language). Musel som implementovat logiku na spracovanie prepojeni (_links), ktoré
API vracia, aby sme sa vedeli navigovat' medzi zdrojmi.

e Ciselniky: Implementoval som metddy pre stahovanie metatdajov, ako su Priority,
Statusy a Typy uloh, ktoré kolega nasledne vyuziva v dropdown menu vo frontende.

4 Zaver

Praca na backende tohto rozSirenia mi priniesla cenné skusenosti s asynchronnym
programovanim v TypeScripte a integraciou komplexnych REST API. Musel som sa
popasovat s autentifikaciou, spracovanim chyb a optimalizaciou vykonu cez lazy loading.
Vysledkom je stabilna integracna vrstva, ktora umoziuje plynull pracu s projektmi priamo v
prostredi editora.



	VSCode Open Project Rozšírenie Technický Report (Backend & API) 
	1 Cieľ projektu 
	2 Prehľad realizovanej práce (Backendová integrácia) 
	2.1 Príprava prostredia a Docker 
	2.2 Implementácia ApiClient.ts 
	2.3 Optimalizácia a Lazy Loading v TreeProvideri 

	3 Technické detaily a dátové modely 
	4 Záver 


